Colorado Firecamp - wildfire training wildland firefighter training Wildfire Blog Engine Boss Apprenticeship Location and Facility About Colorado Firecamp Frequently Asked Questions

Colorado Firecamp - wildland firefighter training
Swiss Cheese Model

swiss cheese slice

The Human Factors Analysis and Classification System—HFACS

Cover and Documentation
Introduction
1. Unsafe Acts
2. Preconditions for Unsafe Acts
3. Unsafe Supervision
4. Organizational Influences
Conclusion
References


HFACS and Wildland Fatality Investigations

Hugh Carson wrote this article a few days after the Cramer Fire

Bill Gabbert wrote this article following the release of the Yarnell Hill Fire ADOSH report


A Roadmap to a Just Culture: Enhancing the Safety Environment

Cover and Contents
Forward by James Reason
Executive Summary
1. Introduction
2. Definitions and Principles of a Just Culture
3. Creating a Just Culture
4. Case Studies
5. References
Appendix A. Reporting Systems
Appendix B. Constraints to a Just Reporting Culture
Appendix C. Different Perspectives
Appendix D. Glossary of Acronyms
Appendix E. Report Feedback Form


Rainbow Springs Fire, 1984 — Incident Commander Narration

Introduction
Years Prior
April 25th
Fire Narrative
Lessons Learned
Conclusion


U.S. Forest Service Fire Suppression: Foundational Doctrine


Tools to Identify Lessons Learned

An FAA website presents 3 tools to identify lessons learned from accidents. The site also includes an animated illustration of a slightly different 'Swiss-cheese' model called "defenses-in-depth."

The Human Factors Analysis and Classification System–HFACS

The “Swiss cheese” model
of accident causation
February 2000


Introduction

Sadly, the annals of aviation history are littered with accidents and tragic losses. Since the late 1950s, however, the drive to reduce the accident rate has yielded unprecedented levels of safety to a point where it is now safer to fly in a commercial airliner than to drive a car or even walk across a busy New York city street. Still, while the aviation accident rate has declined tremendously since the first flights nearly a century ago, the cost of aviation accidents in both lives and dollars has steadily risen. As a result, the effort to reduce the accident rate still further has taken on new meaning within both military and civilian aviation.

Even with all the innovations and improvements realized in the last several decades, one fundamental question remains generally unanswered: “Why do aircraft crash?” The answer may not be as straightforward as one might think. In the early years of aviation, it could reasonably be said that, more often than not, the aircraft killed the pilot. That is, the aircraft were intrinsically unforgiving and, relative to their modern counterparts, mechanically unsafe. However, the modern era of aviation has witnessed an ironic reversal of sorts. It now appears to some that the aircrew themselves are more deadly than the aircraft they fly (Mason, 1993; cited in Murray, 1997). In fact, estimates in the literature indicate that between 70 and 80 percent of aviation accidents can be attributed, at least in part, to human error (Shappell & Wiegmann, 1996). Still, to off-handedly attribute accidents solely to aircrew error is like telling patients they are simply “sick” without examining the underlying causes or further defining the illness.

So what really constitutes that 70-80 % of human error repeatedly referred to in the literature? Some would have us believe that human error and “pilot” error are synonymous. Yet, simply writing off aviation accidents merely to pilot error is an overly simplistic, if not naive, approach to accident causation. After all, it is well established that accidents cannot be attributed to a single cause, or in most instances, even a single individual (Heinrich, Petersen, and Roos, 1980). In fact, even the identification of a “primary” cause is fraught with problems. Rather, aviation accidents are the end result of a number of causes, only the last of which are the unsafe acts of the aircrew (Reason, 1990; Shappell & Wiegmann, 1997a; Heinrich, Peterson, & Roos, 1980; Bird, 1974).

The challenge for accident investigators and analysts alike is how best to identify and mitigate the causal sequence of events, in particular that 70-80 % associated with human error. Armed with this challenge, those interested in accident causation are left with a growing list of investigative schemes to chose from. In fact, there are nearly as many approaches to accident causation as there are those involved in the process (Senders & Moray, 1991). Nevertheless, a comprehensive framework for identifying and analyzing human error continues to elude safety professionals and theorists alike. Consequently, interventions cannot be accurately targeted at specific human causal factors nor can their effectiveness be objectively measured and assessed. Instead, safety professionals are left with the status quo. That is, they are left with interest/fad-driven research resulting in intervention strategies that peck around the edges of accident causation, but do little to reduce the overall accident rate. What is needed is a framework around which a needs-based, data-driven safety program can be developed (Wiegmann & Shappell, 1997).

Reason’s “Swiss Cheese” Model of Human Error

One particularly appealing approach to the genesis of human error is the one proposed by James Reason (1990). Generally referred to as the “Swiss cheese” model of human error, Reason describes four levels of human failure, each influencing the next (Figure 1). Working backwards in time from the accident, the first level depicts those Unsafe Acts of Operators that ultimately led to the accident[1]. More commonly referred to in aviation as aircrew/pilot error, this level is where most accident investigations have focused their efforts and consequently, where most causal factors are uncovered. After all, it is typically the actions or inactions of aircrew that are directly linked to the accident. For instance, failing to properly scan the aircraft’s instruments while in instrument meteorological conditions (IMC) or penetrating IMC when authorized only for visual meteorological conditions (VMC) may yield relatively immediate, and potentially grave, consequences. Represented as “holes” in the cheese, these active failures are typically the last unsafe acts committed by aircrew.

[1] Reason’s original work involved operators of a nuclear power plant. However, for the purposes of this manuscript, the operators here refer to aircrew, maintainers, supervisors and other humans involved in aviation.

However, what makes the “Swiss cheese” model particularly useful in accident investigation, is that it forces investigators to address latent failures within the causal sequence of events as well. As their name suggests, latent failures, unlike their active counterparts, may lie dormant or undetected for hours, days, weeks, or even longer, until one day they adversely affect the unsuspecting aircrew. Consequently, they may be overlooked by investigators with even the best intentions.

Within this concept of latent failures, Reason described three more levels of human failure. The first involves the condition of the aircrew as it affects performance. Referred to as Preconditions for Unsafe Acts, this level involves conditions such as mental fatigue and poor communication and coordination practices, often referred to as crew resource management (CRM). Not surprising, if fatigued aircrew fail to communicate and coordinate their activities with others in the cockpit or individuals external to the aircraft (e.g., air traffic control, maintenance, etc.), poor decisions are made and errors often result.


Figure 1. The “Swiss cheese” model of human error causation (adapted from Reason, 1990).

But exactly why did communication and coordination break down in the first place? This is perhaps where Reason’s work departed from more traditional approaches to human error. In many instances, the breakdown in good CRM practices can be traced back to instances of Unsafe Supervision, the third level of human failure. If, for example, two inexperienced (and perhaps even below average pilots) are paired with each other and sent on a flight into known adverse weather at night, is anyone really surprised by a tragic outcome? To make matters worse, if this questionable manning practice is coupled with the lack of quality CRM training, the potential for miscommunication and ultimately, aircrew errors, is magnified. In a sense then, the crew was “set up” for failure as crew coordination and ultimately performance would be compromised. This is not to lessen the role played by the aircrew, only that intervention and mitigation strategies might lie higher within the system.

Reason’s model didn’t stop at the supervisory level either; the organization itself can impact performance at all levels. For instance, in times of fiscal austerity, funding is often cut, and as a result, training and flight time are curtailed. Consequently, supervisors are often left with no alternative but to task “non-proficient” aviators with complex tasks. Not surprisingly then, in the absence of good CRM training, communication and coordination failures will begin to appear as will a myriad of other preconditions, all of which will affect performance and elicit aircrew errors. Therefore, it makes sense that, if the accident rate is going to be reduced beyond current levels, investigators and analysts alike must examine the accident sequence in its entirety and expand it beyond the cockpit. Ultimately, causal factors at all levels within the organization must be addressed if any accident investigation and prevention system is going to succeed.

In many ways, Reason’s “Swiss cheese” model of accident causation has revolutionized common views of accident causation. Unfortunately, however, it is simply a theory with few details on how to apply it in a real-world setting. In other words, the theory never defines what the “holes in the cheese” really are, at least within the context of everyday operations. Ultimately, one needs to know what these system failures or “holes” are, so that they can be identified during accident investigations or better yet, detected and corrected before an accident occurs.

The balance of this paper will attempt to describe the “holes in the cheese.” However, rather than attempt to define the holes using esoteric theories with little or no practical applicability, the original framework (called the Taxonomy of Unsafe Operations) was developed using over 300 Naval aviation accidents obtained from the U.S. Naval Safety Center (Shappell & Wiegmann, 1997a). The original taxonomy has since been refined using input and data from other military (U.S. Army Safety Center and the U.S. Air Force Safety Center) and civilian organizations (National Transportation Safety Board and the Federal Aviation Administration). The result was the development of the Human Factors Analysis and Classification System (HFACS).

<<< continue reading HFACS, Unsafe Acts >>>

 


©2005-2006 Colorado Firecamp, Inc. home scheduleblogENGBfacilityabout usFAQ's